Abstract
Nonequilibrium conditions offer novel routes to superconductivity that are not available at equilibrium. For example, by engineering nonequilibrium electronic populations, pairing may develop between electrons in different energy bands. A concrete proposal has been made to photo-induce superconductivity in a semiconductor, where pairing occurs between electrons in the conduction and valence bands, even for repulsive interactions. Here, we calculate the superfluid density for such a nonequilibrium paired state, and find it to be positive for repulsive interactions and interband pairing. The positivity of the superfluid density implies the stability of the photo-induced superconducting state as well as the existence of the Meissner effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.