Abstract

Systems of disordered interacting bosons with particle-hole symmetry can undergo a quantum phase transition between the superfluid phase and the Mott glass phase which is a gapless incompressible insulator. We employ large-scale Monte Carlo simulations of a two-dimensional site-diluted quantum rotor model to investigate the properties of the superfluid density and the compressibility at this transition. We find that both quantities feature power-law critical behavior with exponents governed by generalized Josephson relations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call