Abstract
In clean metallic superconductors, 100% of the mobile carriers participate in the condensate, so that the London penetration depth (which measures the electromagnetic screening by the superconductor) indicates charge densities comparable to those inferred from the free-carrier plasma frequency. In the cuprates, this is not the case, even though penetration depth measurements have shown a good correlation between superfluid density and superconducting transition temperature in the underdoped-to-optimally-doped part of the phase diagram. Optical measurements, which permit independent determination of the total doping-induced spectral weight and the superfluid density, show that in optimally doped materials only about 20% of the doping-induced spectral weight joins the superfluid. The rest remains in finite-frequency, midinfrared absorption. In underdoped materials, the superfluid fraction is even smaller. This result implies extremely strong coupling for these superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.