Abstract

We provide a systematic way of dimensional reduction for (4+2n)-dimensional U(N) supersymmetric Yang–Mills (SYM) theories (n=0,1,2,3) and their mixtures compactified on two-dimensional tori with background magnetic fluxes, which preserve a partial N=1 supersymmetry out of full N=2,3 or 4 in the original SYM theories. It is formulated in an N=1 superspace respecting the unbroken supersymmetry, and the four-dimensional effective action is written in terms of superfields representing N=1 vector and chiral multiplets, those arise from the higher-dimensional SYM theories. We also identify the dilaton and geometric moduli dependence of matter Kähler metrics and superpotential couplings as well as of gauge kinetic functions in the effective action. The results would be useful for various phenomenological/cosmological model buildings with SYM theories or D-branes wrapping magnetized tori, especially, with mixture configurations of them with different dimensionalities from each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.