Abstract

A series of strong polyelectrolyte gels were prepared in aqueous solution, using the sodium salt of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) as the monomer and N,N'‐methylene(bis)acrylamide (BAAm) as a crosslinker. The gels were both prepared below (−22°C) and above (25°C) the bulk freezing temperature of the water, producing cryogels and hydrogels, respectively. The crosslinker (BAAm) content was set at 17 mol%, while the initial monomer concentration Co was varied over a wide range. It was found that, at −22°C, a macroscopic network starts to form at an initial monomer concentration of as low as 0.1 w/v%. In contrast to the conventional hydrogels formed at 25°C, the cryogels have a discontinuous morphology consisting of polyhedral pores of sizes 100–102 μm. The cryogels exhibit superfast swelling properties, as well as reversible swelling–deswelling cycles in water and acetone. An increase in the initial monomer concentration from 2.5 to 10% further increases the response rate of the cryogels due to the simultaneous increase of the porosity of the networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.