Abstract

Efficient photocatalytic H2 production from wastewater instead of pure water is a dual solution to the environmental and energy crisis, but due to the rapid recombination of photoinduced charge in the photocatalyst and inevitable electron depletion caused by organic pollutants, a significant challenge of dual-functional photocatalysis (simultaneous oxidative and reductive reactions) in single catalyst is designing spatial separation path for photogenerated charges at atomic level. Here, we designed a Pt-doped BaTiO3 single catalyst with oxygen vacancies (BTPOv) that features Pt-O-Ti3+ short charge separation site, which enables excellent H2 production performance (1519 μmol·g-1·h-1) while oxidizing moxifloxacin (k = 0.048 min-1), almost 43 and 98 times than that of pristine BaTiO3 (35 μmol·g-1·h-1 and k = 0.00049 min-1). The efficient charge separation path is demonstrated that the oxygen vacancies extract photoinduced charge from photocatalyst to catalytic surface, and the adjacent Ti3+ defects allow rapid migration of electrons to Pt atoms through the superexchange effect for H* adsorption and reduction, while the holes will be confined in Ti3+ defects for oxidation of moxifloxacin. Impressively, the BTPOv shows an exceptional atomic economy and potential for practical applications, a best H2 production TOF (370.4 h-1) among the recent reported dual-functional photocatalysts and exhibiting excellent H2 production activity in multiple types of wastewaters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.