Abstract

Gas detonation was calculated by the Monte Carlo method at the molecular level on the basis of non-stationary statistical simulation. The detonation was initiated by instant heating of the flat end of the channel. The efficiency of the method and the used block decomposition of the model space is shown. It turned out that an increase in the reaction threshold from 90kТ 1 to 400kТ 1 (k is the Boltzmann constant, and Т 1 is the initial temperature of the gas) resulted in the disappearance of the region of constant parameters behind the front of the detonation wave. The translational non-equilibrium formed in the detonation front strongly increases the rate of the reaction considered at the front edge. The further increase in the reaction threshold leads to the situation where no detonation occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call