Abstract

The supporting structures in large-size slewing bearings are highly flexible. In order to choose the proper bearing and shape the load-carrying structure one must estimate the distribution of forces among the individual rolling elements. Advanced numerical models are needed for this. An original method of modeling the rolling element-track system is presented and its usefulness for modeling large-size bearings is demonstrated. The results of an exemplary analysis are presented in the form of graphs and figures. The superelement-based discrete bearing models are so far most comprehensive and take into account all the phenomena involved in the bearing-supporting structures system. The application of the finite-element method and the models based on the track-rolling element-track superelement made it possible to determine the effect of the deformability of the supporting structures and the nonuniformity of their flexibility on the loading of the rolling elements in the two-row bearing. The use of formulas which do not take into account the flexibility of the supporting structures to determine the distribution of the load among the rolling elements is unacceptable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.