Abstract
The stability and the reactivity of mono- and diprotonated 4-heterocyclohexanones as well as cyclohexanone in triflic acid have been studied at the PBE0/aug-cc-pvtz//PBE0/6-31+G** level of theory. In all cases the first protonation is an exergonic process occurring at a carbonyl oxygen except for 4-piperidone where a nitrogen atom is protonated fist. Second protonation is only slightly endergonic for all studied molecules except for cyclohexanone where the second protonation is very unfavorable thermodynamically. According to calculations, diprotonated 4-heterocyclohexanones are much more active in the reactions of triflic acid mediated polyalkoxyalkylation with aromatic hydrocarbons compared to monoprotonated ones. The increase of the reactivity of diprotonated 4-heterocyclohexanones is due to inductive effect rather than through space electrostatic influence as follows from the electronic structure analysis of dications. Moreover, the second protonation reduces the possibility of an aldol condensation side reaction, reducing the enol electrophilicity rendering heterocyclohexanones as promising monomers for superacid mediated polyhydroxyalkylation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.