Abstract
A structural model of carbon nanocoils (CNCs) on the basis of carbon nanotubes (CNTs) was proposed. The Young’s moduli and spring constants of CNCs were computed and compared with those of CNTs. Upon elongation and compression, CNCs exhibit superelastic properties that are manifested by the nearly invariant average bond lengths and the large maximum elastic strain limit. Analysis of bond angle distributions shows that the three-dimensional spiral structures of CNCs mainly account for their unique superelasticity.
Highlights
There is a large class of novel nanostructures with helical geometries including boron carbide [1], SiC [2] and ZnO [3, 4] nanosprings, carbon [5] and ZnO [6] nanohelices, and carbon nanocoils [7, 8]
carbon nanocoil (CNC) may inherit some of the fundamental properties of carbon nanotubes but exhibit other unique mechanical, electronic, and magnetic properties associated with their coiled geometries and the intrinsic distribution of five-membered and seven-membered rings
The mechanical properties of a carbon nanocoil can be characterized by spring constant (k) and Young’s modulus (E), which can be computed by the following two formula: U 1⁄4 1kx2; ð1Þ
Summary
There is a large class of novel nanostructures with helical geometries including boron carbide [1], SiC [2] and ZnO [3, 4] nanosprings, carbon [5] and ZnO [6] nanohelices, and carbon nanocoils [7, 8]. Abstract A structural model of carbon nanocoils (CNCs) on the basis of carbon nanotubes (CNTs) was proposed. The Young’s moduli and spring constants of CNCs were computed and compared with those of CNTs. Upon elongation and compression, CNCs exhibit superelastic properties that are manifested by the nearly invariant average bond lengths and the large maximum elastic strain limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.