Abstract
AbstractThe widespread application of flexible electronic devices places higher demands for stretchable conductors as crucial components owing to their stable and consistently high conductivity and high stretchability. In this study, a superelastic conductive fractal helix fiber (FHF) consisting of a thermoplastic polyurethane fiber and Ag wire is developed, which exhibits excellent waterproofing ability. The maximum strain of the FHF can be improved to 8300% by increasing the helical index C and Ag wire winding density. A high conductivity of 6.3 × 107 S m−1 and ultra‐high Q value of 3.37 × 104 at a strain of 5600% are realized for the conductive fiber owing to its fractal helical structure. The elastic limit point A of the FHF can be obtained by the relative resistance change (0.166%) to ensure that elastic deformation only occurs when stress is applied. In the elastic strain range, FHF demonstrates high electrical reliability under repeated deformation (over 10 000 cycles of stretching with a strain of 5600%) with a negligible increase in resistance. Moreover, the FHF can be easily integrated with the fabrics as an interconnection for wearable electronics. The newly developed twined FHF can also be used as a capacitive strain sensor to monitor human activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.