Abstract

To date, the reckless use of deadly chemical warfare agents (CWAs) has posed serious risks to humanity, property, and ecological environment. Therefore, necessary materials able to rapidly adsorb and securely decompose these hazardous toxics are in urgent demand. Herein, three-dimensional (3D) reduced graphene oxide/Zr-doped TiO2 nanofibrous aerogels (RGO/ZT NAs) are synthesized by feasibly combining sol-gel electrospinning technology and a unidirectional freeze-drying approach. Benefiting from the synergetic coassembly of flexible ZT nanofibers and pliable RGO nanosheets, the hierarchically entangled fibrous frameworks feature ultralow density, superior elasticity, and robust fatigue resistance over 106 compressive cycles. In particular, the RGO incorporation is attributed to the achieved increased surface area, stronger light absorption, and decreased recombination of charge-carriers for photocatalysis. The highly porous 3D RGO/ZT NAs deliver enhanced photothermal catalytic activity for CWA degradation as well as excellent recyclability and good photostability. This work opens fresh horizons for developing advanced 3D aerogel-based photocatalysts in a controlled fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.