Abstract
Investigating the behavior of noninteracting fermions subjected to local dephasing, we reveal that quasi-particle dephasing can induce superdiffusive transport. This superdiffusion arises from nodal points within the momentum distribution of local dephasing quasi-particles, leading to asymptotic long-lived modes. By studying the dynamics of the Wigner function, we rigorously elucidate how the dynamics of these enduring modes give rise to Lévy walk processes, a renowned mechanism underlying superdiffusion phenomena. Our research demonstrates the controllability of dynamical scaling exponents by selecting quasi-particles and extends its applicability to higher dimensions, underlining the pervasive nature of superdiffusion in dephasing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.