Abstract

Stochastic transport of a two-dimensional (2D) dusty plasma liquid with a perpendicular magnetic field is studied. Superdiffusion is found to occur especially at higher magnetic fields with β of order unity. Here, β = ω(c)/ω(pd) is the ratio of the cyclotron and plasma frequencies for dust particles. The mean-square displacement MSD = 4D(α)t(α) is found to have an exponent α > 1, indicating superdiffusion, with α increasing monotonically to 1.1 as β increases to unity. The 2D Langevin molecular dynamics simulation used here also reveals that another indicator of random particle motion, the velocity autocorrelation function, has a dominant peak frequency ω(peak) that empirically obeys ω(peak)(2) = ω(c)(2) + ω(pd)(2)/4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.