Abstract
We identify a class of one-dimensional spin and fermionic lattice models that display diverging spin and charge diffusion constants, including several paradigmatic models of exactly solvable, strongly correlated many-body dynamics such as the isotropic Heisenberg spin chains, the Fermi-Hubbard model, and the t-J model at the integrable point. Using the hydrodynamic transport theory, we derive an analytic lower bound on the spin and charge diffusion constants by calculating the curvature of the corresponding Drude weights at half-filling, and demonstrate that for certain lattice models with isotropic interactions some of the Noether charges exhibit superdiffusive transport at finite temperature and half-filling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.