Abstract
A class of cubic networks composed of a regular one-dimensional lattice and a set of long-range links is introduced. Networks parametrized by a positive integer k are constructed by starting from a one-dimensional lattice and iteratively connecting each site of degree 2 with a kth neighboring site of degree 2. Specifying the way pairs of sites to be connected are selected, various random and regular networks are defined, all of which have a power-law edge-length distribution of the form P_{>}(l) approximately l;{-s} with the marginal exponent s=1 . In all these networks, lengths of shortest paths grow as a power of the distance and random walk is superdiffusive. Applying a renormalization group method, the corresponding shortest-path dimensions and random-walk dimensions are calculated exactly for k=1 networks and for k=2 regular networks; in other cases, they are estimated by numerical methods. Although, s=1 holds for all representatives of this class, the above quantities are found to depend on the details of the structure of networks controlled by k and other parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.