Abstract
Altman [1] showed that Riesz-Schauder theory remains valid for a completely continuous linear operator on a locally convex Hausdorflf topological vector space over the complex field. In a later paper [2], he proved an analogue of the Aronszajn-Smith result; specifically, he showed that such an operator possesses a proper closed invariant subspace. The purpose of this paper is to show that Ringrose's theory of superdiagonal forms for compact linear operators [3] can be generalized to the case of a completely continuous linear operator on a locally convex Hausdorff topological vector space over the complex field. However, the proof given in [3] requires considerable modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.