Abstract

A method of generating superdense coding based on quantum hyper-entanglement and facilitated by quantum networks is discussed. Superdense coding refers to the coding of more than one classical bit into each qubit. Quantum hyperentanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, and orbital angular momentum (OAM). The new superdense coding scheme permits 2L bits to be encoded into each qubit where L is the number of degrees of freedom used for quantum hyper-entanglement. The superdense coding procedure is based on a generalization of the Bell state for L degrees of freedom. Theory describing the structure, generation/transmission, and detection of the generalized Bell state is developed. Circuit models are provided describing the generation/transmission process and detection process. Detection processes are represented mathematically as projection operators. A mathematical proof that that the detection scheme permits the generalized Bell states to be distinguished with 100% probability is provided. Measures of effectiveness (MOEs) are derived for the superdense coding scheme based on open systems theory represented in terms of density operators. Noise and loss related to generation/transmission, detection and propagation are included. The MOEs include various probabilities, quantum Chernoff bound, a measure of the number of message photons that must be transmitted to successfully send and receive a message, SNR and the quantum Cramer Rao’ lower bound. Quantum networks with quantum memory are used to increase the efficiency of the superdense coding scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.