Abstract

Herein, we introduce supercycle of R-symmetry sequences (SR-sequences) and incomplete supercycle schemes of R-symmetry sequences (iSR-I- and iSR-II-sequences) to improve the robustness of PRESTO for heteronuclear polarization transfer in MAS NMR. The constructions of SR- and iSR-I/II- sequences are based on the different phase-inverted supercycles of R-symmetry sequences, and such supercycles can suppress the influence of CSA, resonance offset and RF mismatch when incorporated into the PRESTO method. Moreover, the SR- and iSR-II-sequences are more efficient in suppressing the interference of homonuclear dipolar coupling. The improved robustness of SR-, iSR-I- and iSR-II-PRESTO over the original R-PRESTO has been verified by numerical simulations and NMR experiments on NH4H2PO4 and gamma-alumina at fast MAS conditions. It is also important to note that the SR- and iSR-II-PRESTO can greatly lengthen the transverse relaxation times and lead to much higher polarization transfer efficiency compared to R-PRESTO, thanks to their superior tolerance to RF inhomogeneity and homonuclear dipolar coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call