Abstract

We report evidence for the existence of a supercurrent of magnons in a magnon Bose-Einstein condensate prepared in a room temperature yttrium-iron-garnet magnetic film and subject to a thermal gradient. The magnon condensate is formed in a parametrically populated magnon gas, and its temporal evolution is studied by time-, frequency- and wavector-resolved Brillouin light scattering spectroscopy. It has been found that local heating in the focal point of a probing laser beam enhances the temporal decrease in the density of the freely evolving magnon condensate after the termination of the pumping pulse, but it does not alter the relaxation dynamics of the gaseous magnon phase. This phenomenon is understood as the appearance of a magnon supercurrent within the condensate due to a temperature- and, consequently, magnetisation-gradient induced phase gradient in the condensate wave function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.