Abstract

We present here an extensive theoretical analysis of the supercurrent of a superconducting point contact of arbitrary transparency in the presence of a microwave field. Our study is mainly based on two different approaches: a two-level model that describes the dynamics of the Andreev bound states in these systems and a fully microscopic method based on the Keldysh-Green function technique. This combination provides both a deep insight into the physics of irradiated Josephson junctions and quantitative predictions for arbitrary range of parameters. The main predictions of our analysis are: (i) for weak fields and low temperatures, the microwaves can induce transitions between the Andreev states leading to a large suppression of the supercurrent at certain values of the phase, (ii) at strong fields, the current-phase relation is strongly distorted and the corresponding critical current does not follow a simple Bessel-function-like behavior, and (iii) at finite temperature, the microwave field can enhance the critical current by means of transitions connecting the continuum of states outside the gap region and the Andreev states inside the gap. Our study is of relevance for a large variety of superconducting weak links as well as for the proposals of using the Andreev bound states of a point contact for quantum computing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.