Abstract

(1) Background: In the quest to accurately model the radiolysis of water in its supercritical state, a detailed understanding of water's molecular structure, particularly how water molecules are arranged in this unique state, is essential. (2) Methods: We conducted molecular dynamics simulations using the SPC/E water model to investigate the molecular structures of supercritical water (SCW) over a wide temperature range, extending up to 800 °C. (3) Results: Our results show that at a constant pressure of 25 MPa, the average intermolecular distance around a reference water molecule remains remarkably stable at ~2.9 Å. This uniformity persists across a substantial temperature range, demonstrating the unique heterogeneous nature of SCW under these extreme conditions. Notably, the simulations also reveal intricate patterns within SCW, indicating the simultaneous presence of regions with high and low density. As temperatures increase, we observe a rise in the formation of molecular clusters, which are accompanied by a reduction in their average size. (4) Conclusions: These findings highlight the necessity of incorporating the molecular complexity of SCW into traditional track-structure chemistry models to improve predictions of SCW behavior under ionizing radiation. The study establishes a foundational reference for further exploration of the properties of supercritical water, particularly for its application in advanced nuclear technologies, including the next generation of water-cooled reactors and their small modular reactor variants that utilize SCW as a coolant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.