Abstract

A series of experiments with transesterification of rapeseed oil in supercritical methanol and supercritical ethanol was carried out in a batch reactor at various reaction temperatures (250–350°C), working pressure (8–12MPa), reaction time (7, 15 and 30min), and at a constant 42:1 alcohol to oil molar ratio. The effect of alcohol, temperature, pressure and reaction time on biodiesel yield was investigated using linear multiple regression models. In the observed range, temperature has the highest impact on yields, followed by reaction time and pressure. The relative importance of time and pressure in explaining yields is higher in the case of transesterification in supercritical ethanol. The results of environmental life cycle assessment have revealed that contrary to general belief the usage of ethanol instead of methanol cannot improve the sustainability and renewability of the transesterification process significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.