Abstract

Compounds of interest for chemical hydrogen storage at near ambient conditions are specifically tailored to be relatively unstable and thereby desorb H2 upon heating. Their decomposition must be performed in the absence of impurities to achieve clean dehydrogenation products, which is particularly challenging for an emerging class of microporous complex hydride materials, such as γ-phase Mg(BH4)2, which exhibits high surface area and readily adsorbs (sometimes undesired) molecular species. We present a novel strategy toward the purification of γ-Mg(BH4)2 using supercritical nitrogen drying techniques, (1) showing that clean hydrogen can be released from Mg(BH4)2 under mild conditions and (2) clarifying the origin of diborane among the decomposition products of stable borohydrides, a topic of critical importance for the reversibility and practical applicability of this class of hydrogen storage compounds. This technique is also widely applicable in the pursuit of the high-purity synthesis of other porous, reactive compounds, an exciting future class of advanced functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.