Abstract

Supercritical nitrogen jet behavior is modeled using an incompressible but variable density approach developed for variable density jets. Following mechanical and thermal breakup concepts, several injection conditions relevant to liquid rocket propulsion are analyzed, considering heat transfer in the injector. Regarding axial density distributions, different levels of agreement with experimental data are encountered for potential core, subsided core, and plateau formations. Further comparisons with compressible formulations from the literature are a good indicator of the proposed methodology’s suitability for the simulation of supercritical injection behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call