Abstract
Oxidative recycling of metals is crucial for a circular economy, encompassing the preservation of natural resources, the reduction of energy consumption, and the mitigation of environmental impacts and greenhouse gas emissions associated with traditional mining and processing. Low-melting gallium trichloride appears to be a promising oxidative solvent for rare-earth metals, transuranium elements, platinum, pnictogens, and chalcogens. Typically, oxidative dissolution with GaCl3 occurs at relatively low temperatures over a few days, assuming the presence of tetrahedral Ga-Cl entities. While supercritical gallium trichloride holds the potential for advanced recycling, little is known about its structure and viscosity. Using high-energy X-ray diffraction and multiscale modeling, which includes first-principles simulations, we have revealed a dual molecular nature of supercritical gallium trichloride, consisting of tetrahedral dimers and flat trigonal monomers. The molecular geometry can be precisely tuned by adjusting the temperature and pressure, optimizing the recycling process for specific metals. The derived viscosity, consistent with the reported results in the vicinity of melting, decreases by a factor of 100 above the critical temperature, enabling fast molecular diffusion, and efficient recycling kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.