Abstract
Supercritical fluid extraction (SFE) is a green alternative method of extraction for neutral lipids in seeds compared to conventional methods utilizing organic solvents. In this work, a novel method where SFE is hyphenated with an evaporative light scattering detector is presented. The method was subsequently applied to determine lipid content in crushed linseed. The new method enables rapid quantification of extracted lipids as well as be ability to continuously monitor the extraction rate in real-time, thus being able to determine the time point of completed extraction.Both the detector and the method was validated. The results show that any of several tested oils can be used to calibrate the detection method for the determination of lipids extraction from linseed. The overall method repeatability and intermediate precision was 2.6% relative standard deviations. The extracted amount was significantly less than that obtained using the standard method of Soxhlet with petroleum ether, 26.0±0.4% (95% CI, n=9) compared to 32.3±1.3% (95% CI, n=3) of extracted amounts.It was found that channeling effects were present, and by either performing sequential repeated extractions with decompression in-between or by using a relatively large vessel a more complete extraction could be obtained. Interestingly, a substantially higher extracted amount (approximately 50%) was obtained compared to both a single extraction by SFE and the Soxhlet method. Therefore, it is recommended that an additional extraction including a rapid decompression in-between should be included in the validation of a method using supercritical fluid extraction, in order to either rule out channeling effects or to acquire a full recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.