Abstract
Cocoa is a product of natural origin rich in polyphenols, mainly procyanidins and flavan-3-ols, which has a high antioxidant power. Its regular consumption brings positive health effects. The objective of the present study was to evaluate the effects of diameter of particle, extraction time, temperature, pressure and ethanol concentration in the supercritical fluid extraction (SFE) of bioactive compounds from cocoa husk. This work was developed in two stages. The first stage was aimed to study the impact of the particle size and extraction time. Extractions were carried out under constant conditions. Once particle size and extraction time were defined, it gave way to the second stage, where the effect of three levels of temperature (308.15, 313.15 and 318.15 K), pressure (10, 15 and 20 MPa) and concentration of ethanol (2, 11, and 20% ethanol) were evaluated. The results of this study suggest that particle sizes less than 0.26mm and extraction times exceeding 147min could increase the total polyphenol content (TPC). Finally, a multivariate statistical analysis was developed, showing that the most favorable conditions for obtaining extracts rich in polyphenols corresponded to 308.15K, 20MPa and 20% ethanol, under which the TPC was 35.11(±1.57)EAGmg/LEg, a total flavan-3-oles content (TFC) of 12.89 (±0.51)EEPmg/gLE and total carotenoids content (TCC) of 64.35(±1.54)EBC mg/gLE. The results obtained suggest that SFE favors the extraction of apolar compounds (carotenoids) from cocoa husk. Likewise, for the optimal extraction point, husk cocoa showed antioxidant capacity of 489.58μmol ET/LEg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista Facultad de Ingeniería Universidad de Antioquia
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.