Abstract

The automatic balancing and undesirable nonsynchronous behavior of coupled oscillating configured flexible foundation and planar eccentric rotor equipped with a passive autobalancer (AB) system has been thoroughly investigated here. Specifically, it is described that the unified AB/rotor unit is attached to a foundation via a symmetric support and the foundation is also mounted on the spring‐damper isolator which allows oscillating only vertically. Therefore, the AB/rotor unit dynamically interacts with the flexible foundation, which is quite analogous to well‐known vertically coupled two‐spring and two‐mass oscillator. Although the single unit AB/rotor system is widely explored in the related AB studies, such coupled arrangement with AB discussed here has not been previously investigated and thus needs to be explored for further application of AB into various vibration isolation problems of other complicated machines/settings. Therefore, solutions for the synchronous stable balanced and the nonsynchronous unstable limit cycle response of AB/rotor/foundation system are obtained via a fixed equilibrium condition and a harmonic like balancing approach. Furthermore, the stability of each response is assessed via a perturbation and Floquet analysis and, for the system parameters and operating speeds, the undesirable coexistence of the wanted stable balanced synchronous response and undesirable nonsynchronous limit cycle has been thoroughly studied. Due to coupled oscillating feature, it is newly found that the multiple limit cycles are encountered in the range of supercritical speeds and more complicated coexistence is attracted into the system, as well as the damping parameters of coupled components (i.e., flexible foundation) influences of the undesirable limit cycle of AB on the particular supercritical speeds. The findings in this paper yield important insights for researchers wishing to utilize automatic balancing devices in more practical rotor systems coupled with additional vibrating mechanical subsystem such as a washing machine or a reciprocating air conditioning compressor with a flexible foundation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.