Abstract

With the aim of increasing the mechanical and biological properties of different materials, a supercritical CO2 (SC-CO2) assisted technique was used to include a polymer with a natural origin (levan) in membranes of cellulose acetate (CA) and polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP). CA-levan membranes were characterized by interconnected pores ranging from 9 to 13 μm; due to levan addition, composite membranes increased their mechanical resistance and cells adhesion (from 8% to 30%). In the second system, the processing of a PVDF-HFP-DMSO-levan colloidal suspension system caused a morphological modification and the generation of a foam-like structure; a decrease of the mechanical resistance and an increase of cells adhesion (from 8% to 35%) were observed. Stress-strain responses for both systems were fitted using two different hyperelastic equations, Yeoh and Ogden; deviations from experimental data lower than 15% were obtained.In conclusion, SC-CO2 assisted process was able to generate composite structures with levan, accessible to the cells; i.e., transforming polymers like CA and PVDF-HFP in potentially useful materials for biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call