Abstract

AbstractThis article examines several new methods for compounding nanocomposite materials by twin screw extrusion that use supercritical CO2 as a processing aid to produce more highly exfoliated polyolefin‐layered silicate nanocomposites than conventional melt intercalation. These methods varied the manner in which the plasticizing behavior of CO2 influences the surfactant of an organoclay, the compatibilizer, and the matrix during preparation of a polyolefin nanocomposite. The results have shown that targeting CO2 to the organoclay‐compatibilizer interface can improve the extent of intercalation. However, reduced performance was observed when CO2 was introduced predominantly to the matrix or neat organoclay. In general, the different techniques of addition for CO2 did bring about greater structural changes to the organoclay, but the stiffness of the resulting materials was lower than simply following a conventional melt intercalation approach. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.