Abstract

Six different membranes were tested at 18.0 MPa and 313 K for their performance to fractionate a model mixture of squalene/oleic acid with supercritical carbon dioxide. A significant enrichment of squalene in the permeate side was achieved with a 10 μm-coating layer polydimethyl siloxane (PDMS) membrane at the tested conditions although with the drawback of a lower total permeate flux. Additional fractionation experiments of the same model mixture were carried out in a countercurrent packed column at 18.0 MPa of pressure and 313 and 323 K of temperature. At a solvent-to-feed mass flow ratio of ca. 40 an extraction efficiency of 88% of the total mass of squalene fed to the column was obtained at 18.0 MPa/313 K. The raffinate and extract streams obtained at these conditions had a squalene content of 10 and 63.5 wt%, respectively. An optimized combination of supercritical extraction and membrane separation could be used to increase the purity of the extract stream in squalene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.