Abstract
In the present paper, the possibility of increasing the thermodynamic efficiency of an electric energy production plant, by using an advanced energy conversion system based on supercritical carbon dioxide (S-CO2) as working fluid, has been analyzed. Since the supercritical carbon dioxide cycles are being considered as a favorable candidate for the next generation of nuclear power plant energy conversion systems, a lead cooled fast reactor has been selected as reference in the present analyses. The main aim of the present study is to compare two different S-CO2 thermal cycles applied on the conversion system of a nuclear power plant. The reference Lead cooled Fast Reactor (LFR) used for the present analyses is the ALFRED reactor, which has a thermal power of 300 MW and it is considered the scaled down prototype of the industrial European Lead Fast Reactor (ELFR).Thermodynamic cycles selected for the present study are a Recompression Cycle and a Brayton Cycle with Regeneration. Each of them has been analyzed under several design conditions regarding the maximum pressure and the regeneration coefficient. Among different design conditions, the solution allowing the maximization of the overall efficiency has been identified. Thermodynamic analyses have been carried out with GateCycle™ v. 6.1.1, which is a General Electric software able to predict design and off-design performance of power plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.