Abstract

The redbay ambrosia beetle, Xyleborus glabratus Eichoff, (Coleoptera: Curculionidae: Scolytinae) is a severe pest of North American trees and shrubs in the family Lauraceae. Supercooling point (SCP) is an important physiological baseline for cold tolerance studies and could provide useful insights into the invasive potential of X. glabratus in northern latitudes of North America. The supercooling point (SCP) of X. glabratus was experimentally determined on field-collected and artificially cold hardened specimens. Field-collected beetles were captured in Jackson County, Mississippi using Lindgren funnel traps baited with manuka oil lures. Testing was conducted from June through August 2011. The mean SCP for field-collected X. glabratus was -21.7 ± 0.5 °C (± SE). A significant negative trend in the SCPs of field-collected beetles occurred over the summer testing period. Xyleborus glabratus specimens were reared from redbay (Persea borbonia (L.) Sprengel bolts in June 2012 and artificially cold hardened in a low temperature incubator at a thermo-photoperiod of 7 °C:2 °C (10:14 h L:D) for 31 days. Artificially cold hardened X. glabratus supercooled to a mean temperature of -23.9 ± 0.4 °C (± SE), which was significantly lower than that of field-collected beetles. Biometric indices of beetles (size, weight, and size x weight interaction) had no effect on the mean supercooling SCPs of either field-collected or artificially cold hardened beetles. Results from environmentally conditioned beetles suggest that X. glabratus has a high degree of thermal plasticity. Based on the artificially cold hardened mean SCP, X. glabratus and laurel wilt disease have the possibility to impact sassafras and northern spicebush throughout eastern North America. The data, although preliminary, suggests that a previous spatio-temporal model based on climate match data may have substantially underestimated the geographical area that may be affected by X. glabratus. This study will help form the basis of building and validating models to better predict the North American invasion potential of X. glabratus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.