Abstract

The increase in the time- and temperature-dependent heat capacity, C p, in the glass–liquid transition range of water has been investigated using earlier data [G.P. Johari, A. Hallbrucker, E. Mayer, Nature 330 (1987) 552], new computation of the manner of C p increase in the glass–liquid transition range and theoretical views. The investigation shows that the temperature dependence of structural relaxation time of water in the 136–148 K range remains non-Arrhenius, like the dielectric relaxation time [G.P. Johari, J. Chem. Phys. 105 (1996) 7079] and the self-diffusion coefficient [R.C. Smith, B.D. Kay, Nature 398 (1999) 788]. Theoretical reasons for the broadening of the heat-capacity endotherm are given and verified by computation. Analysis shows that for an Arrhenius-type relaxation-dynamics, the configurational entropy of a liquid will remain constant on its cooling, which violates the consequences of the third law of thermodynamics. When the relaxation time is taken as 10 2 s at T g and as 10 −14 s at infinite temperature for analysing a liquid's relaxation [K. Ito, C.T. Moynihan, C.A. Angell, Nature 398 (1999) 492; R. Richert, C.A. Angell, J. Chem. Phys. 108 (1998) 9016], the Arrhenius energy becomes unjustifiably proportional to the T g of a liquid. In its glass transition features, water is not as analogous with molten silica as is believed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call