Abstract

Dark Matter could be a composite state of a confining sector with an approximate scale symmetry. We consider the case where the associated pseudo-Goldstone boson, the dilaton, mediates its interactions with the Standard Model. When the confining phase transition in the early universe is supercooled, its dynamics allows for Dark Matter masses up to 106 TeV. We derive the precise parameter space compatible with all experimental constraints, finding that this scenario can be tested partly by telescopes and entirely by gravitational waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.