Abstract

In this paper, we present and analyze a superconvergent local discontinuous Galerkin (LDG) scheme for the numerical solution of nonlinear KdV-type partial differential equations. Optimal a priori error estimates for the LDG solution and for the two auxiliary variables that approximate the first-and second-order derivative are derived in the L2-norm for the semi-discrete formulation. The order of convergence is proved to be p+1, when piecewise polynomials of degree at most p are used. We further prove that the derivative of the LDG solution is superconvergent with order p+1 towards the derivative of a special projection of the exact solution. We use this results to prove that the LDG solution is superconvergent with order p+3/2 toward a special Gauss-Radau projection of the exact solution. Finally, several numerical examples are given to validate the theoretical results. Our proofs are valid for arbitrary regular meshes using Pp polynomials with p≥1 and under the condition that |f'(u)| possesses a uniform positive lower bound, where f(u) is the nonlinear flux function. Our experiments demonstrate that our results hold true for KdV equations with general flux functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call