Abstract

We derive superconvergence result for H 1-Galerkin mixed finite element method for second-order elliptic equations over rectangular partitions. Compared to standard mixed finite element procedure, the method is not subject to the Ladyzhenskaya–Babŭska–Brezzi (LBB) condition and the approximating finite element spaces are allowed to be of different polynomial degrees. Superconvergence estimate of order 𝒪(h k+3), where k ≥ 1 is the order of the approximating polynomials employed in the Raviart–Thomas elements, is established for the flux via a postprocessing technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.