Abstract

In this paper, a numerical fully discrete scheme based on the finite element approximation for the distributed order time fractional variable coefficient diffusion equations is developed and a complete error analysis is provided. The weighted and shifted Grünwald formula is applied for the time-fractional derivative and finite element approach for the spatial discretization. The unconditional stability and the global superconvergence estimate of the fully discrete scheme are proved rigorously. Extensive numerical experiments are presented to illustrate the accuracy and efficiency of the scheme, and to verify the convergence theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.