Abstract
In this paper we study the superconvergence of the discontinuous Galerkin solutions for nonlinear hyperbolic partial differential equations. On the first inflow element we prove that the p-degree discontinuous finite element solution converges at Radau points with an O( h p+2 ) rate. We further show that the solution flux converges on average at O( h 2 p+2 ) on element outflow boundary when no reaction terms are present. For reaction–convection problems we establish an O( h min(2 p+2, p+4) ) superconvergence rate of the flux on element outflow boundary. Globally, we prove that the flux converges at O( h 2 p+1 ) on average at the outflow of smooth-solution regions for nonlinear conservation laws. Numerical computations indicate that our results extend to nonrectangular meshes and nonuniform polynomial degrees. We further include a numerical example which shows that discontinuous solutions are superconvergent to the unique entropy solution away from shock discontinuities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.