Abstract

The spider dragline silk (SDS) has a supercontraction characteristic, which may cause the axial length of the SDS to shrink up to 50% when the SDS is wet or the relative humidity is higher than 58% RH. In this manuscript, we employ the supercontraction characteristic of the SDS to measure relative humidity. We connect two sections of a single-mode fiber (SMF) and a section of multimode fiber (MMF) with a sandwich structure to fabricate a single-mode-multimode-single-mode (SMS) interferometer. Then we fix the SDS on two SMFs to configure a bow-shaped sensing unit. The increase of environmental humidity will cause the supercontraction of the SDS, which will cause the change of the SDS length. The excellent mechanical properties of the SDS will generate a strong pulling force and change the bending of the arch, whose interference spectrum will shift correspondingly. In this way, we may perform relative humidity sensing. In the relative humidity range of 58% RH to 100% RH, the average sensitivity is as high as 6.213 nm/% RH, higher than most fiber-based humidity sensors. Compared with the traditional sensing structure with humidity-sensitive materials, the proposed sensor improves the sensitivity with environmental friendliness. The results suggest that the SDS can be used for high-sensitivity humidity sensors, and its degradability and biocompatibility also have a vast development space in biochemical sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.