Abstract
Muscle mechanics dictates a trade-off between the ability of a muscle to generate isometric force and its length. This intrinsic trade-off is the result of the need for overlap between thick and thin filaments upon extension of the sarcomere and of the limitations imposed by the physical interference between the thin filaments and the thick filaments with the Z-disk upon contraction. However, previously published data indicate that chameleons are able to produce a nearly constant tongue retraction force over a wide range of tongue extension lengths, made possible by the presence of supercontracting muscle in the tongue retractors. Investigation of the length/tension properties and ultrastructure of the tongue retractor in a closely related agamid lizard (Pogona vitticeps) indicates that the ability to generate tension at extreme elongation is probably a derived feature for chameleons. Whereas chameleons are unique among vertebrates in possessing supercontracting muscle, this seems to be a common phenomenon in invertebrates. However, the presence of supercontracting muscle in chameleons and in several invertebrate groups seems to be coupled to the need to generate tension over large changes in muscle length and might be a more general solution for this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.