Abstract

We characterize the spectral broadening performance in silica clad and unclad Tantalum pentoxide (Ta2O5) waveguides as a function of the input pulse central wavelength and polarization, sweeping over a wavelength range from 900 nm to 1500 nm, with an average incident power of 110 mW. The waveguides are 0.7 µm high and between 2.2 and 3.2 µm wide, and the SiO2 top cladding layer is 2 µm thick. We model the dispersion of the higher order spatial modes, and use numerical simulations based on the generalized nonlinear Schrödinger equation to analyze the nonlinear behaviour of the spatial modes within the waveguides as well as the dispersive effects observed in the experiments. We achieve octave spanning supercontinuum with an average power of 175 mW incident on the waveguide at 1000 nm pump wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.