Abstract

Supercontinuum generation is demonstrated in a 3-mm-long ultra-silicon-rich nitride (USRN) waveguide by launching 500 fs pulses centered at 1555 nm with a pulse energy of 17 pJ. The generated supercontinuum is experimentally characterized to possess a high spectral coherence, with an average |g12| exceeding 0.90 across the wavelength range of the coherence measurement (1260 nm to 1700 nm). Numerical simulations further indicate a high coherence over the full spectrum. The experimentally measured supercontinuum agrees well with the theoretical simulations based on the generalized nonlinear Schrödinger equation. The generated broadband spectra using 500 fs pulses possessing high spectral coherence provide a promising route for CMOS-compatible light sources for self-referencing applications, metrology, and imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.