Abstract

We study the constraints of superconformal symmetry on codimension two defects in four-dimensional superconformal field theories. We show that the one-point function of the stress tensor and the two-point function of the displacement operator are related, and we discuss the consequences of this relation for the Weyl anomaly coefficients as well as in a few examples, including the supersymmetric Rényi entropy. Imposing consistency with existing results, we propose a general relation that could hold for sufficiently supersymmetric defects of arbitrary dimension and codimension. Turning to mathcal{N} = (2, 2) surface defects in mathcal{N} ≥ 2 superconformal field theories, we study the associated chiral algebra. We work out various properties of the modules introduced by the defect in the original chiral algebra. In particular, we find that the one-point function of the stress tensor controls the dimension of the defect identity in chiral algebra, providing a novel way to compute it, once the defect identity is identified. Studying a few examples, we show explicitly how these properties are realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call