Abstract

The quantum mechanics of N slowly-moving charged BPS black holes in five-dimensional ${\cal N}=1$ supergravity is considered. The moduli space metric of the N black holes is derived and shown to admit 4 supersymmetries. A near-horizon limit is found in which the dynamics of widely separated black holes decouples from that of strongly-interacting, near-coincident black holes. This decoupling suggests that the quantum states supported in the near-horizon moduli space can be interpreted as internal states of a single composite black hole carrying all of the charge. The near-horizon theory is shown to have an enhanced D(2,1;0) superconformal symmetry. Eigenstates of the Hamiltonian H of the near-horizon theory are ill-defined due to noncompact regions of the moduli space corresponding to highly redshifted near-coincident black holes. It is argued that one should consider, instead of H eigenstates, eigenstates of $2 L_0 = H+K$, where K is the generator of special conformal transformations. The result is a well-defined Hilbert space with a discrete spectrum describing the N-black hole dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.