Abstract

This work demonstrates void-free cobalt filling of 56 mm tall, annular Through Silicon Vias (TSVs) using a mechanism that couples suppression breakdown and surface topography to achieve controlled bottom-up deposition. The chemistry, a Watts electrolyte containing a dilute suppressing additive, and processes are fully detailed. The impact of deposition potential and additive concentration on the filling of the patterned features is presented. Voltammetric measurements on planar substrates, including the impact of rotation rate and suppressor concentration on the rate of metal deposition and potential of suppression breakdown, are used to quantify the interplay between metal deposition and suppressor adsorption. The derived kinetics are then used to quantitatively predict the observed bottom-up filling in the TSVs using the S-shaped negative differential resistance (S-NDR) mechanism for superconformal deposition; the predictions capture the experimental observations. This work extends understanding and application of the additive-derived S-NDR mechanism, including previous demonstrations of superconformal filling of TSVs with nickel as well as copper, zinc and gold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call