Abstract

Using semiclassics to surmount the hurdle of bulk-surface inseparability, we derive the superconductor vortex spectrum in nonmagnetic Weyl semimetals and show that it stems from the Berry phase of orbits made of Fermi arcs on opposite surfaces and bulk chiral modes. Tilting the vortex transmutes it between bosonic, fermionic, and supersymmetric, produces periodic peaks in the density of states that signify novel nonlocal Majorana modes, and yields a thickness-independent spectrum at magic "magic angles." We propose (Nb,Ta)P as candidate materials and tunneling spectroscopy as the ideal experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.