Abstract

We have studied transport in mesoscopic superconductor-semiconductor hybrid structures consisting of two-dimensional arrays of micrometer-sized niobium dots deposited on high-mobility InAs:GaSb quantum wells. The grating arrays were designed to have a dot size and spacing of 3, 1.5, and 1 {mu}m, so as to be smaller than the electron mean free path of {approximately}5 {mu}m. At low temperatures all the structures show clear evidence of Andreev reflection while the two smaller period samples also exhibit a proximity-induced superconducting phase. We present measurements of the differential resistance at different temperatures and magnetic fields. For fields greater than 0.3 T, different features are observed in the differential resistance which we attribute to nonuniform flux penetration around the superconducting dots. {copyright} {ital 1996 The American Physical Society.}

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.