Abstract

We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain. Namely, we determine the critical Josephson energy below which the chain becomes insulating, as a function of the ratio of two capacitances: the capacitance of each Josephson junction and the capacitance between each superconducting island and the ground. We develop an imaginary-time path integral Quantum Monte-Carlo algorithm in the charge representation, which enables us to efficiently handle the electrostatic part of the chain Hamiltonian. We find that a large part of the phase diagram is determined by anharmonic corrections which are not captured by the standard Kosterlitz-Thouless renormalization group description of the transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.